
Experimental Results for Class-Based Queueing

Sally Floyd and Michael Francis Speer

November 11, 1998

This is a preliminary and incomplete draft of a paper in
progress.

1 Introduction

This paper describes the experience of implementing CBQ's
top-level link sharing code as described previously in [FJ95].
This implementation incorporates work from previous im-
plementations of Class-Based Queueing from LBNL [Jac95]
and UCL [WGC 95]. This implementation extends the work
of previous implementations by incorporating both Top-Level
link-sharing and Weighted Round Robin within priority lev-
els of the link-sharing structure.

As discussed in [FJ95] and [Flo97], the use of Top-Level
instead of Ancestor-Only link-sharing allows a class to re-
ceive its allocated bandwidth more accurately from a CBQ
implementation.

Similarly, as discussed in [FJ95] and [Flo97], weighted
round robin (WRR) has two advantages over packet-by-packet
round robin (PRR) scheduling within a priority level. First,
WRR gives better worst-case delay behavior than PRR schedul-
ing for higher-priority classes. Second, WRR scheduling al-
lows excess bandwidth to be distributed among classes in a
priority level according to the bandwidth allocations of those
classes.

2 Description of CBQ Implementation

2.1 General CBQ description

Before discussing this CBQ implementation in detail, it is
important to note that this CBQ implementation is built uti-
lizing many components. At the high level CBQ is not just
a packet scheduler; it is a link-sharing resource manager. In
principle, CBQ's link-sharing could be implemented in con-
junction with a number of different packet scheduling algo-
rithms within a priority level, such as Deficit Round Robin,
Weighted Fair Queueing, or Fair Queueing. This implemen-
tation utilizes an implementation of Weighted Round Robin
(WRR) and/or Packet-by-Packet Round Robin (PRR) schedul-
ing. Compared to other general scheduling algorithms, these

This work was supported by the Director, Office of Energy Research,
Scientific Computing Staff, of the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.

two schedulers seem to be the least expensive in computa-
tional complexity. We discuss the details of these scheduling
algorithms later in the paper.

2.2 Principles Applied in CBQ Implementa-
tion

This CBQ implementation follows many principles previ-
ously outlined in [FJ95] to allow for the maximum flexibility.

First, this CBQ implementation continues to maintain a
separation of low-level mechanisms and high-level policy.
The CBQ kernel code provides a rich interface to implement
variety of high-level policies, including, if so desired, RSVP
and Integrated Services.

Second, the CBQ implementation preserves the link-sharing
model presented in [FJ95]. Link-sharing resources are asso-
ciated with CBQ traffic classes, where each CBQ traffic class
has a bandwidth allocation and a priority. It is left to the
high-level policy daemon to make decisions about how to al-
location bandwidth and priorities to the various classes. The
CBQ implementation is able to handle Quality-of-Service
(QOS) and link-sharing constraints simultaneously.

Finally, the CBQ implementation avoids the need for ex-
tensive per-conversation parameterization. Hence, this CBQ
implementation is able to separate IP conversations (flows)
into classes with a minimum of class and filter parameteriza-
tion.

2.3 CBQ Implementation

Major components of this implementation for CBQ's top-
level link sharing include a packet classifier, link-sharing
framework, packet scheduler, estimator, and management in-
terface. The packet classifier maps arriving packets into traf-
fic classes. The link-sharing framework is needed to main-
tain link-sharing constraints for an interface (e.g. an output
port) with a hierarchical link-sharing structure. The packet
scheduler schedules traffic classes according to their band-
width and priority considerations, with help from the esti-
mator. The management interface allows for the creation
and deletion of traffic classes; the creation and deletion of
packet classifier filters to map IP flows to the appropriate
traffic classes; and a simple statistical interface for inspec-
tion of CBQ's current state.

1

In this CBQ implementation, the link-sharing framework
is implemented using Top-Level Link-Sharing, described in
[FJ95]. Previous implementations implemented Ancestor-
Only link-sharing.

In this CBQ implementation, the packet scheduler or se-
lector is implemented with either a packet-by-packet round
robin (PRR) or weighted round robin (WRR) scheduler. The
scheduler uses priorities, first scheduling packets from the
highest priority level. Round-robin scheduling is used to ar-
bitrate between traffic classes within the same priority level.
The weighted round robin scheduler differs from the packet-
by-packet scheduler in that it uses weights proportional to a
traffic class's bandwidth allocation. The weight determines
the number of bytes that a traffic class is allowed to send dur-
ing a round of the scheduler. If a packet to be transmitted by a
WRR traffic class is larger than the traffic class's weight and
the class is underlimit (via link-sharing constraints), then the
packet is sent, allowing the traffic class to borrow ahead from
its weighted allotment for future rounds of the round-robin.
The implementation of the WRR scheduler largely follows
that of the CBQ code in the ”ns” simulator [MF95]. In the
implementation of the CBQ code the scheduler components
are implemented as the functions rmc prr dequeue next for
PRR and rmc wrr dequeue next for WRR, both in the file
rm class.c [FS97].

When a traffic class is overlimit and unable to borrow
from parent classes, the scheduler activates the overlimit ac-
tion handler for that class. There are many policies that
could implemented for an overlimit class, including simply
dropping arriving packets for such a class. This CBQ im-
plementation rate-limits overlimit classes to their allocated
bandwidth. The rate-limiter computes the next time that an
overlimit class is allowed to send traffic. The class will not be
allowed to send another packet until this future time has ar-
rived. This rate-limiter action is implemented as
rmc delay action in the file rm class.c of the CBQ imple-
mentation [FS97].

The estimator estimates the bandwidth used by each traf-
fic class over the appropriate time interval (or, more pre-
cisely, simply estimates whether each class is over or under
its allocated bandwidth). As discussed later, the time con-
stant for the estimator determines the interval over which the
router attempts to enforce the link-sharing bandwidth con-
straint. Hence the parameterization of this time constraint
is key to enforcing link-sharing bandwidth allocations. This
implementation employs a exponential weighted moving av-
erage (EWMA) to estimate the bandwidth used by each class.
In this CBQ implementation, the estimator is implemented
as the function rmc update util in the file rm class.c of the
CBQ implementation [FS97].

The network management interface for this CBQ imple-
mentation allows for RSVP [BZ97] and other resource man-
agement mechanisms to configure the output link in the man-
ner appropriate for those mechanisms. The network man-
agement interface allows for the creation and destruction of

CBQ traffic classes, the appropriate filters to map the IP
flows to traffic classes via the packet classifier, and a rather
crude statistical interface for monitoring CBQ's internal state.
All code in the management interface can be found in the file
cbq.c of this CBQ implementation [FS97].

3 CBQ Parameters

The CBQ parameters for each class are set at class creation
time. Using the experimental policy daemon cbqd, classes
are created and parameterized as specified in a configura-
tion file. Each class definition supplies the priority, the al-
located bandwidth for the class (expressed in terms of link
bandwidth percentage), average packetsize, maxburst, min-
burst and maxdelay. Average packetsize is used in calcu-
lating maxidle and offtime, as shown below. Maxburst is the
maximum burst size for the class (that is, the maximum num-
ber of back-to-back packets sent by a previously-idle class).
Minburst is the burst size for an overlimit class that is be-
ing regulated to its allocated bandwidth. Maxdelay is the tar-
get maximum delay (in milliseconds) that average packetsize
packets will have to wait to be scheduled. Maxdelay is used
to determine the maxq (maximum queue length in number
of packets) parameter for the CBQ traffic class. Using these
class parameters, other class parameters such as maxidle are
derived to drive the CBQ scheduling apparatus.

For each class parameter not supplied in the class def-
inition, default values are supplied. Some of these default
values are as follows: maxburst defaults to 20 packets; min-
burst defaults to 2 packets; average packetsize defaults to
1000 bytes; and maxdelay defaults to 100 milliseconds.

In the CBQ policy daemon associated with the distributed
code [FS97], the function cbq create class in the file cbqif.c
utilizes the various inputs to compute the parameters dis-
cussed below.

3.1 CBQ Parameter Definitions

In CBQ, each class has variables idle and avgidle, and a pa-
rameter maxidle used in computing the limit status for the
class. This section discusses setting the maxidle parameter.
At one time a minidle parameter was used in the ns simula-
tor, but that parameter has been removed, and there is now
no lower bound on avgidle.

Definition: idle. The variable idle is the difference be-
tween the desired time and the measured actual time between
the most recent packet transmissions for the last two packets
sent from this class. When the connection is sending per-
fectly at its allotted rate , then idle is zero. When the con-
nection is sending more that its allocated bandwidth, then
idle is negative.

Definition: avgidle. The variable avgidle is the average
of idle, and is computed using a exponential weighted mov-
ing average (EWMA). When avgidle is zero or lower, then

2

the class is overlimit (the class has been exceeding its allo-
cated bandwidth in a recent short time interval).

Definition: maxidle. The parameter maxidle gives an
upper bound for avgidle. Thus maxidle limits the `credit'
given to a class that has recently been under its allocation.

Definition: offtime. The parameter offtime gives the
time interval that a overlimit class must wait before send-
ing another packet. This parameter is determined in part by
the steady-state burst size minburst for a class when the class
is running over its limit. In the ns simulator [MF95], this
steady-state burst size is controlled by the extradelay param-
eter. A steady-state burst size of one packet can be achieved
in the ns simulator by setting setting extradelay to 0. In
the CBQ implementation a small steady-state burst size is
achieved by setting minburst to 1.

3.2 Setting Maxidle

Maxidle controls the burstiness allowed to a class. As Ap-
pendix A shows, to permit a maximum burst of
back-to-back packets, maxidle is set as follows:

for the interpacket time for `average' sized packets sent
back-to-back, the fraction of the link bandwidth allocated
to the class, and weight , for

In addition, the following constraint should be observed:

Appendix A.3 shows that the calculation of avgidle in
the code in fact corresponds to the equations in [FJ95]. Ap-
pendix B justifies the equations used for setting the variable
undertime in the procedure rmc update class util.

3.3 Setting Offtime

For leaf classes, offtime controls the steady-state burst size
for a regulated class. In cbqd, for a regulated class with a
burst size of 1, offtime in its unscaled value is set as follows:

This is the target waiting time to maintain the allocated band-
width with a steady-state burst size of only one packet.

For a steady-state burst size of packets for
, cbqd further modifies offtime as follows:

3.4 Setting Efficient Mode

Additionally, this CBQ implementation implements a work
conserving mode called efficient mode. When activated via
the configuration file, efficient mode enables the CBQ im-
plemenation to select a packet from a overlimit class if all
classes of the link sharing hierarchy are overlimit. In prac-
tice, this will be the first overlimit class discovered in the
link-sharing hierarchy. In employing efficient mode, it is im-
portant to note that the link will always be transmitting a
packet. Hence, the link will achieve 100link. Equally, some
traffic classes will experience more raw throughput than al-
located in the link-sharing structure.

4 Description of experimental testbed

In the development and the testing of this CBQ implementa-
tion, one testbed was used to test and refine the CBQ imple-
mentation and collect the results from various experiments.
The testbed as seen in Figure 1.

ROUTER

SINK

VIDEO
SOURCESOURCE

10 Mbps

1.5 Mbps

VIDEO
SOURCE SOURCE

DATA DATA

GROUP
 A

GROUP
 B

GROUP
 A

GROUP
 B

Figure 1: Network Setup for Link Sharing Experiments

This testbed employs 6 Sun SPARCstation 20 and Sun
SPARCstation 5 workstations. The router in Figure 1 is a Sun
SPARCstation 20 with two 125 MHz HyperSPARC CPUs
with 256 KBytes of external cache. The router running So-
laris 2.5.1 has been updated with TCP/IP kernel modules
that will accommodate RSVP operation, routing function-
ality, IGMPv2, and DVMRP multicast routing. Within this
testbed, cbqd was employed to configure the link between
the router and the sink to test the CBQ implementation in
various link sharing experiments. Each of the sources in the
testbed where connected to the router via switched ethernet
on individual networks.

For testing RSVP operation with CBQ, the testbed in

3

Figure 1 was upgraded. The link between the router and the
sink was upgraded to 10 MBit/second switched ethernet. All
the links between the router and the sources remained the
same.

In performing CBQ and/or RSVP experiments, a number
of parameters were captured and examined to gain insight on
the performance of the CBQ machinery. These parameters
included packet delay, throughput, packet drops, and avgidle
within a class. To capture these parameters, a number of
tools where employed including tcpdump and adb.

5 Description of the simulator

This note compares simulation acceptance tests for CBQ
(class-based queueing) as implemented in the ns simulator
[MF95] with the performance of CBQ in an actual imple-
mentation.

The simulator implements three separate algorithms for
link-sharing described in [FJ95]: Formal, Top-level, and
Ancestor-Only link-sharing. The simulator implements both
WRR and PRR scheduling within classes of the same pri-
ority level. The WRR scheduling algorithm is described in
Appendix A of [FJ95].

[Flo97] discusses the validations tests for the CBQ sim-
ulation in the ns simulator. Several of the validation tests
were reproduced in the experimental testbed to validate the
experimental code.

6 Experiments

In this sections we compare the experimental results of CBQ
with results from simulations. The test scenarios are from
the test suite used to validate the CBQ implementation in
the NS simulator, and illustrate bandwidth allocations and
hierarchical link-sharing. Additional test scenarios demon-
strate the differences between weighted round-robin (WRR)
and packet round-robin (PRR) scheduling within a priority
level. The final test scenarios show the effects of the param-
eter that controls the maximum burstiness from a previously-
idle class.

6.1 Hierarchical link-sharing

The simulation and experiment in Figure 3 verify that hi-
erarchical link-sharing works correctly. The simulation sce-
nario is given in Figure 1, and the link-sharing structure for
the congested link is shown in Figure 2. The link bandwidth
is shared by two agencies, each with two subclasses. When
one of the subclasses has no data to send, that bandwidth
should be available to be used by the other subclass of that
agency.

The simulations on the left in Figure 3 generally repro-
duce the simulations shown in Figure 11 of [FJ95]. These
simulations are run in the ns-1 simulator with the command

A B

videoftpvideo ftp

70% 30%

1, 30% 2, 40% 2, 20%1, 10%

Figure 2: Link-sharing structure for two-agency link-
sharing.

“ns test-suite-cbq.tcl cbqFor”, and in the ns-2 simulator with
the command “ns test-suite-cbq-v1.tcl cbqFor” in the direc-
tory tcl/test. These simulations are discussed further in Sec-
tion V.A. of [FJ95]. The reader is referred to the file “test-
suite-cbq-v1.tcl” for the details of the simulation set-up.

The simulations use Formal link-sharing, with WRR
scheduling within a priority class. The -axis of the graph
shows time in seconds, and the -axis shows each class's
bandwidth averaged over one-second intervals.

Initially, all classes have full demand, and receive their
respective allocations of 10%, 20%, 30%, and 40% of the
link bandwidth. Each class in turn has a period of no de-
mand, and the simulation shows that in each case, the other
subclass in that agency gets to use the bandwidth from that
class. At the end of the simulation the two high-priority
classes both have no demand, and the bandwidth is shared
among the two lower-priority classes of the two agencies.

The right graph in Figure 3 shows an experiment with the
same scenario. The CBQ implementation for the experiment
uses a variant of Top-Level link-sharing, also with WRR
scheduling within a priority class. The experiment shows
in steady state, when all classes have full demand, that each
class receives roughly its allocated bandwidth (10%, 20%,
30%, and 40%). The experiment also shows that while hier-
archical link-sharing is working roughly as it should, “bor-
rowed” bandwidth is allocated somewhat less precisely. When
one of the classes stops sending, its “companion” class in the
same agency generally does not get to borrow enough to re-
ceive all of the bandwidth allocated to the parent class.

6.2 Classes with small bandwidth allocations

The simulations and experiments in this section test CBQ's
ability to treat priority and bandwidth as orthogonal. More
precisely, the test scenario shows CBQ's ability to allocate
and deliver a small bandwidth to an overlimit high-priority
class.

Figure 4 shows a simulation and experiment of a link
that is shared by two classes, a high-priority class A allo-
cated 0.1% of the link bandwidth, and a lower-priority class
B allocated the remaining 99.9% of the bandwidth. This sce-

4

Time

B
an

dw
id

th

0 10 20 30 40

0
20

40
60

80
10

0

Time

B
an

dw
id

th

0 20 40 60

0
20

40
60

80
10

0

Figure 3: Simulations (left) and experiments (right, 11/01/98) of hierarchical link-sharing.

Time

B
an

dw
id

th

0 2 4 6 8

0
20

40
60

80
10

0

Time

B
an

dw
id

th

0 10 20 30 40

0
20

40
60

80
10

0

Figure 4: Simulations (left) and experiments (right, 11/01/98) of classes with small bandwidth allocations.

Time

B
an

dw
id

th

0 10 20 30 40

0
20

40
60

80
10

0

Figure 5: PRR, 11/1/98

nario tests the robustness of the link-sharing mechanisms and
the sensitivity to the CBQ parameters when there is a high-
priority class with a small allocated bandwidth.

This scenario serves in part as a stress-test of the link-
sharing algorithms in an implementation. In the simulator,
this scenario demonstrates the limitations of Ancestor-Only
link-sharing (as compared to Formal or Top-Level link-sharing).
Of the three link-sharing mechanisms in the NS simulator,
Ancestor-Only link-sharing is closest to the link-sharing mech-
anisms in the 1995 CBQ code.

The data source for Class A is a CBR flow that sends
190-byte packets every 0.001 seconds. The data source for
Class B is a CBR flow that sends 500-byte packets every
0.002 seconds.

The left graph of Figure 4 shows simulations using For-

mal link-sharing. The higher-priority class is properly re-
stricted to a small fraction of the link bandwidth. This test
is run in ns-1 with the command “ns test-suite-cbq.tcl cbqT-
woF”, and in ns-2 with the command “ns test-suite-cbq-v1.tcl
cbqTwoF” in the directory tcl/test.

The bottom graph of Figure 4 shows an experiment of
the same scenario using a variant of Top-Level link-sharing.
As Figure 4 shows, in the experiment the bandwidth of the
high-priority class is controlled somewhat less precisely that
in the simulation. We have not yet determined what changes
are needed in the CBQ code to bring the results more in line
with those in the simulator.

6.3 Experiments on WRR and PRR

The simulations and experiments in this section demonstrate
one of the differences between the PRR and WRR schedul-
ing algorithms within a priority level. These tests show that
with WRR scheduling, extra bandwidth is allocated accord-
ing to the relative bandwidth allocations of the other high-
priority classes. With PRR scheduling, the allocation of ex-
tra bandwidth is according to the relative packet sizes of the
other high-priority classes, and not according to their relative
bandwidth allocations.

Another motivation for using WRR instead of PRR sched-
uleing within a priority level can be that WRR scheduling re-
duces the worst-case delay that can be experienced by a set
of packets arriving to an empty queue. This aspect of WRR

5

scheduling is not demonstrated in this paper.

Link

ftpaudio video

1, 3% 2, 65%1, 32%

Figure 6: Link-sharing structure for two-agency link-
sharing.

Figure 7 reproduces Figure 10 from [FJ95]. The link-
sharing structure for the congested link is shown in Figure
6. The top left graph shows a simulation using PRR, and the
bottom left graph shows a simulation using WRR. The two
simulations differ in the distribution of “extra” bandwidth
to the two high-priority classes when the lower priority ftp
class has no data to send. When the ftp class has no data to
send, WRR distributes the extra bandwidth to the audio and
video classes in proportion to their allocated bandwidth. In
contrast, PRR distributes the extra bandwidth to the audio
and video classes in proportion to their packet sizes, which
are 190 bytes and 500 bytes respectively.

These simulations can be run in ns-1 with the com-
mands “ns test-suite-cbq.tcl cbqPRR” and “ns test-suite-
cbq.tcl cbqWRR”, and in ns-2 with the commands “ns test-
suite-cbq.tcl PRR” and “ns test-suite-cbq.tcl WRR” in direc-
tory tcl/test.

The top left graph shows the experiment using PRR, and
the bottom left graph shows the experiment using WRR. Both
experiments show the expected distribution of bandwidth be-
tween the higher-priority classes when the low-priority class
stops sending at time 22-30. The main discrepancy between
the experiments and the simulations is that when the higher-
priority video class stops sending at time 34-42, a small amount
of the “extra” bandwidth goes to the lower-priority ftp class.
The initial spikes in the experiment are due to the staggered
starting times of the three classes, and each experiment also
shows a “drop-out” where no data was collected.

6.4 Experiments showing effects of changing
parameters

6.4.1 The maximum burstiness for underlimit classes

Figure 8 shows the use of the maxidle parameter to con-
trol the maximum burstiness allowed from a previously-idle
class. Consider a high-priority class that has been using less
than its allocated bandwidth. If packets arrive for that class
in a burst, then the worst-case delay for packets in that class
is reduced if the packets are allowed to leave in a burst. At
the same time, limitations have to be put on the short-term
bursts allowed from high-priority classes, in order to limit
the delays experienced by lower-priority classes. This max-

imum burstiness allowed to underlimit classes is controlled
by the maxidle parameter.

These figures show simulations with different values for
maxidle (which determines the maximum number of back-
to-back packets). The “maxidle” parameter serves a similar
function as does the bucket size in a token bucket.

For each graph in Figure 8, the bottom row shows packets
for Class A, and the top row shows packets for Class B. Each
of the two classes is allocated 30% of the link bandwidth.
The -axis shows time and the -axis shows the packet num-
ber (mod 90).

For the simulations, there is a mark for each packet when
it arrives at the congested router, and another mark when
the packet leaves the congested router. Class B has a CBR
source that sends 1000-byte packets at 0.01 second inter-
vals. At time 1, eighty 1000-byte packets arrive at the router
for Class A back-to-back. The graphs show that a burst of
packets is allowed to be sent at line rate (where the size
of the burst is either 25 packets or 5 packets, depending on
the value of maxidle). After the initial burst, the remaining
packets in the queue for Class A are sent at the allocated
bandwidth of the class. These simulations are run in ns-
1 with the commands “ns test-suite-cbq.tcl Max1” and “ns
test-suite-cbq.tcl Max2”, and in ns-2 with the commands “ns
test-suite-cbq.tcl MAX1” and “ns test-suite-cbq.tcl MAX2”
in directory tcl/test.

For the experiments, there is a mark for each packet as
it arrives at the receiver. At a fixed time, a flow assigned to
Class A begins to transmit packets at a rate higher than the
allocated bandwidth of the class. The experiments show that
maxidle successfully controls the size of the initial burst.

7 Acknowledgements

References

[BZ97] R. Braden and L. Zhang. Resource reser-
vation protocol version 1 functional specifi-
cation. (Internet draft, work in progress),
June 1997. URL ftp://ds.intenic.net/internet-
drafts/draft-ietf-rsvp-spec-16.txt.

[FJ95] S. Floyd and V. Jacobson. Link-sharing
and resource management models for packet
networks. IEEE/ACM Transactions on Net-
working, 3(4), 1995. URL http://www-
nrg.ee.lbl.gov/nrg-papers.html/.

[Flo97] S. Floyd. Ns simulator tests for class-based
queueing. Unpublished draft, Apr. 1997. URL
ftp://ftp.ee.lbl.gov/papers/cbqsims.ps.Z.

[FS97] S. Floyd and M. Speer. Lbnl' s
cbq code v2.0, May 1997. URL
ftp://ftp.ee.lbl.gov/cbq2.0.tar.Z.

6

Time

B
an

dw
id

th

0 5 10 15 20 25

0
20

40
60

80
10

0

Time

B
an

dw
id

th

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Time

B
an

dw
id

th

0 5 10 15 20 25

0
20

40
60

80
10

0

Time

B
an

dw
id

th

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Figure 7: Simulations (left column) and experiments (right column) with PRR (top row) and WRR (bottom row).

[Jac95] V. Jacobson. Lbnl' s cbq code v1.1, August
1995. URL ftp://ftp.ee.lbl.gov/cbq.tar.Z.

[MF95] S. McCanne and S. Floyd. Ns (net-
work simulator), 1995. URL http://www-
mash.cs.berkeley.edu/ns/.

[WGC 95] I. Wakeman, A. Ghosh, J. Crowcroft, V. Ja-
cobson, and S. Flo yd. Implementing
real time packet forwarding policies using
streams. Usenix 1995 Technical Confer-
ence, January 1995, New Orleans, Louisia
na, pp. 71-82., January 1995. URL
ftp://cs.ucl.ac.uk/darpa/usenix-cbq.ps.Z.

A Maxidle

We assume that maxidle is set when a class is created. Maxi-
dle determines the maximum size burst allowed for a class
that has sent no packets in the recent time interval.

Definitions: t, g, p. Let be the time to transmit a packet,
for the most recent packet sent from a class. Let be the
fraction of the link bandwidth allocated to that class. If the
actual interpacket time for packets sent back-to-back from
the class is , then the `target' interpacket time (the time be-
tween transmitting two packets of that size at the allocated
rate) is , and idle is . The formula for comput-

ing avgidle is

The weight would typically be (that is,
, for set to) or (for

set to 5). The weight determines the “time
constant” of the averager.

Assume that avgidle initially has the value . Then
after back-to-back packets, avgidle is

This derivation uses the fact that

If reaches after consecutive packets, and
had the value at the beginning of the burst, then the
maximum size burst allowed for that class is packets. In
order to allow a maximum size burst of packets of bytes
each, should be set to

(1)

where is the packet transmission time for a packet of
bytes.

7

Time.

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

..

.

.

....

.

...................
....................

....................
....................

....................
....................

....................
....................

................

....................

..

.

...........

.

..

......

....

.

.

.

.....

.

....

.

..

.

.....

.

...

.

..

.

......

.

..

.

...

.

.....

.

..

.

....

.

.....

.

.

.

....

.

......

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

..
.

.

.

.

..
.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

..
.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

..
.

.

.

...
.

..

...
..

.

.....
.

.

.....

..

.....

.

.....

.

......

..

.....

.

.....

.

......

.

.....

..

.....

.

.....

.

.....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

...

.

.

....

.

....

.

....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

....

.

....

.

....

.

....

.

.....

Time.

P
ac

ke
t N

um
be

r
(M

od
 9

0)

2.571*10^12 2.573*10^12 2.575*10^12 2.577*10^12

0
50

10
0

15
0

.........
.........

.........
.........

.........
.........

.........
.........

.........
........

.........
.........

.....

.......

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
...

Time.

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

..

.

.

....

.

...................
....................

....................
....................

....................
....................

....................
....................

................

....................

..

.

...........

.

..

......

....

.

.

.

.....

.

....

.

..

.

.....

.

...

.

..

.

......

.

..

.

...

.

.....

.

..

.

....

.

.....

.

.

.

....

.

......

....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

....

.

....

.

....

.

....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

....

.

....

.

....

.

....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

....

.

....

.

....

.

....

..

.....

.

....

.

....

.

..

..

.

....

.

.

.

....

.

....

.

....

.

....

.

....

..

.....

.

....

.

....

.

....

.

....

.

.

.

....

.

....

.

...

Time.

P
ac

ke
t N

um
be

r
(M

od
 9

0)

1.019*10^12 1.021*10^12 1.023*10^12 1.025*10^12

0
50

10
0

15
0

.........
.........

.........
.........

.........
.........

.........
.........

.........
........

.........
.........

.........
.........

.........

.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........
.........

Figure 8: Simulations (left) and experiments (right, 11/19/97) with maxidle set for a max burst of 25 (top) or 5 (bottom)
back-to-back packets.

A.1 An additional constraint on maxidle

In addition to equation (1) above, maxidle needs to be suf-
ficiently large to allow for the normal variation in idle, and
therefore avgidle, over one round of the round-robin schedul-
ing. This is not a problem for classes with moderate band-
width allocations, but an additional constraint is required for
classes with bandwidth allocations greater than half the link
bandwidth.

Let be the packet transmission time for a “typical” packet.
When a class sends two packets back-to-back, the resulting
value of idle is , as shown earlier. However, any class
allocated less than 100% of the link bandwidth will occa-
sionally have to wait for at least one other packet to be trans-
mitted, and in this case the resulting value of idle will be at
least (making the simplifying assumption for the
moment that all packets are the same size). Thus maxidle
has to be sufficiently large not to “lose” the information that
a class waited for another packet to be transmitted.

Consider a class A that has just become overlimit (e.g.,
avgidle has just become negative), and has to wait for a packet
from another class to be transmitted. After that transmission,

class A's value for idle is , and this is averaged into
the previous value of as follows:

This gives

Thus, to ensure that a high-bandwidth class does not “lose”
information about having waiting for some other packet to
be transmitted, it is sufficient that the following condition on
maxidle be observed:

A.2 Maxidle with arbitrary packet sizes

Of course, packets can come in a wide range of sizes. As-
sume that the actual packets are bytes, for some ,
with transmission times of . Then what is the maximum

8

number of back-to-back packets of this size that could be
sent, if avgidle is initially at the value for maxidle given by
the equation above?

Idle will be , and after back-to-back
packets,

We would like to know the value of when avgidle first be-
comes zero.

Solving we get

and

n=8, g=15/16
Packet size (normalized).

N
o.

 o
f b

ac
k-

to
-b

ac
k

by
te

s
(n

or
m

al
iz

ed
).

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

Figure 9: Number of back-to-back bytes allowed by maxidle
given a range of packet sizes. Fraction of allocated through-
put, for .

The initial transmission time was based on -byte
packets. Now, instead of sending back-to-back bytes,
with packets of bytes we get to send back-to-
back bytes. Figure 9 shows plotted as a function of ,
for and . As Figure 9 shows, maxidle is
fairly effective in controlling the maximum number of back-
to-back bytes even for a range of packet sizes.

A.3 The calculation of avgidle

This section shows that the calculation of avgidle in the code
in fact corresponds to the equation in [FJ95]. From [FJ95],
avgidle is calculated from idle as follows:

for some weight chosen as a negative power of two.
In the code in rm class.c, there are two cases. When the

option `USE HRTIME' is employed, meaning that a 64-bit
representation of wall-clock time is used, avgidle is repre-
sented in its true unscaled value, and the following equation
is used:

avgidle += (1)
((idle - avgidle) >> RM_FILTER_GAIN);

This is equivalent to the following:

avgidle +=
(idle - avgidle) (1/2ˆRM_FILTER_GAIN);

or equivalently,

avgidle =
(1 - 1/2ˆRM_FILTER_GAIN) avgidle
+ (1/2ˆRM_FILTER_GAIN) idle;

This gives the correct equation.
When `USE HRTIME' is not employed, the scaled value

avgIdle is used as follows:

avgIdle = avgidle * 2ˆRM_FILTER_GAIN,

for avgidle the true unscaled value. In this case, the fol-
lowing equation is used instead of equation (1):

avgIdle += (2)
idle - (avgIdle >> RM_FILTER_GAIN),

This is therefore equivalent to

avgidle * 2ˆRM_FILTER_GAIN +=
idle - avgidle.

Simplifying,

avgidle +=
(idle - avgidle)/2ˆRM_FILTER_GAIN.

Thus, equation (1) when `USE HRTIME' is employed is
equivalent to equation (2) and a scaled value for avgIdle
when `USE HRTIME' is not employed.

B Regulating overlimit classes: the de-
tails

Definition: undertime, now, overlimit. The CBQ sched-
uler checks the class variable undertime to see if a class can
send packets without borrowing. A class is not allowed to
send a packet when and the class is un-
able to borrow. If is positive after a packet has been
sent from a class, then should be set to zero (or
to something else less than the current time).

After a packet is sent from a class, is updated.
This section explains the equations used when is
negative and a class that is unable to borrow therefore has

9

to be regulated to its allocated bandwidth. If the class is to
be regulated, then it must wait at least the target waiting time
ptime before sending another packet, for

If is negative, then the class must also wait at least

additional seconds, to ensure that avgidle will no longer be
negative when the next packet is sent.

To show that this is correct, the class will wait

seconds before sending the next packet. Assume that this
packet is the same size as the last one, and also has a trans-
mission time of seconds. Then will be calculated as

and the next value for will be as follows:

There is an optional parameter called extradelay in the
ns simulator that can be used in determining how long to ad-
ditionally delay an overlimit class. The parameter extrade-
lay gives the additional time interval that a overlimit class
must wait before sending another packet. This parameter de-
termines the steady-state burst size for a class when the class
is running over its limit. When extradelay is set to 0, then
the steady-state burst size for an overlimit class is one packet.
We do not discuss this further in this paper.

For the experimental code, the parameter offtime is used
to determine how long an overlimit class is to be delayed.
For a steady-state burst size of one packet, offtime is set to
ptime, for ptime as defined in the beginning of this section.
For a steady-state burst size of packets, for , then
offtime is set as follows:

for

In the simulator ns, this is called instead of
. Recall that is defined by the following

equation, for the weight used in the exponential weighted moving aver-
age: .

B.1 Controlling the minimum burstiness for a
regulated class

The guidelines above for calculating undertime assume that
after a regulated class sends a packet, it will have to wait
the minimum possible time before sending the next packet.
However, for efficiency of implementation, it might in some
environments be desirable to have the regulated class wait
longer after sending a packet, and to therefore send small
bursts of packets, giving a steady-state burst size for the reg-
ulated class of more than one packet.

Let offtime be the time that the class has to wait after
sending a packet. Assume that in steady state, for a class with
plenty of demand that is being restricted to its link-sharing
bandwidth), the CBQ implementation regulates the output
for that class to a steady-state burst of packets. (This refers
to a steady-state where the class is allowed to send a burst
of packets, and then is forced to wait some time before
sending another burst of packets, and so on.) Let
be the value for that allows a burst of size before

reaches 0. Then

Assume that a class is made to wait when avgidle be-
comes at most zero. Then we want to set offtime so that, if
the class is allowed to send a packet after offtime seconds,
the new value for avgidle will be , so that exactly

more consecutive packets can be sent until avgidle
reaches zero again. This is true if

for idle as follows:

This gives

As examples, for , , and , this
is

For ,

(This concurs with the findings later in this section that for
a class with a steady-state burst size of , the throughput is
higher with higher values of . As increases, then
approaches closer to , the value that would be
needed for the class to achieve 100% of its throughput allo-
cation.)

10

What is a class's actual throughput if this procedure is
used, and a regulated class is required to send its packets in
small bursts? The class transmits packets in seconds,
and then waits for seconds. Thus the actual through-
put, as a fraction of the maximum bandwidth of the link, is

A connection that sends bursts of packets in this man-
ner will get slightly less that the specified fraction of the
bandwidth, for . Figure 10 shows the fraction of
its allocated throughput achieved by a delayed class, for

. The x-axis shows the steady-state burst size and the
y-axis shows the allocated throughput for the class. The z-
axis shows the fraction of allocated throughput achieved by
the delayed class. For this figure, we assume that
seconds, but the results are essentially the same for a wide
range of values for (e.g., for as small as 0.01 ms). The
results for are similar to those in Figure 10. This
data argues for a small steady-state burst size, particularly
for classes with small allocations. In our simulations, we
generally use a steady-state burst size of packet.

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

Figure 10: Fraction of allocated throughput, for .

(What is the intuition behind this behavior? With a steady-
state consisting of a burst of packets followed by a delay,
the computed oscillates above and below the true
steady-state average of the variable idle. With this mecha-
nism, the class is delayed when the true average for idle is
greater than zero, and therefore the true throughput is less
than the allocated throughput.

For any , in order to guarantee that a class achieves
at least the fraction of its allocated throughput, it is suffi-
cient to pick a steady-state burst size of at most , for such

that

Figure 11 shows the upper bound on burst size for a class
to achieve at least 90% of its allocated throughput, for

. Thus, for a steady-state burst size of 8 packets, a
class should achieve at least 90% of its allocated throughput,
regardless of the allocated bandwidth for that class.

(g = 31/32, percent of allocation = 90%)
throughput allocation(%)

u
p

p
er

 b
o

u
n

d
 o

n
 b

u
rs

t
si

ze
0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 11: Upper bound on burst size for 90% of throughput,
for .

B.2 Offtime with arbitrary packet sizes

Assume that offtime is pre-computed based on an assump-
tion of a typical packet size of bytes, with a transmission
time of seconds, but that actual packets have a size of
bytes, as in Section A.2. Using the results in Section A.2, we
can infer that offtime should be fairly effective in maintain-
ing the steady-state burst size in bytes, even with a range of
typical packet sizes. Simulations confirm that the throughput
achieved by a class in bytes-per-second is fairly insensitive
to the packet size in bytes.

C Guaranteed Service

This is a note on implementing guaranteed service using CBQ.
We assume that a flow that has been accepted (by the ad-
missions control procedure) for guaranteed service will be
assigned its own priority-one class at the router. This note
does not discuss the admissions control procedure.

C.1 The guaranteed service template

From the guaranteed service template, the router is given the
TSpec (traffic specification) and RSpec (service specifica-
tion) for the flow. The TSpec consists of a token bucket with
a bucket depth b and a bucket rate r; the source should be

11

policed at the edge of the network by this token bucket. The
RSpec consists of a rate R, for . The flow's service at
the router is characterized by the bandwidth R and a buffer
size B, where R represents the bandwidth that the flow is en-
titled to receive, and B represents the allocated buffer space
in the router. It is assumed that the router will derive, from
the TSpec, the required buffer space B to that no packets are
dropped at the router.

The router exports two error terms C and D for a particu-
lar accepted flow. The router ensures that for a flow policed
by the specified token bucket, the per-packet queueing delay
at the router will be less than

The service template gives the example of WRQ, where C is
the MTU of the outbound link and D is 0. The queueing de-
lay of b/R can be attributed to a bucket b of packets arriving
instantaneously and effectively being transmitted at rate R.
The C/R and D terms should include the queueing delay due
to the transmission delay for the packet currently in service
when a real-time packet arrives at the gateway, as well as the
queueing delay due to other real-time packets scheduled to
be sent before the packet in question.

C.2 CBQ

In CBQ, the priority-1 classes are served round-robin. The
service discipline for the priority-1 classes can be either packet-
by-packet round-robin (PRR) or weighted round-robin (WRR).
For each class's turn in the round-robin scheduling, the amount
of data that that packet gets to send depends on two factors,
the scheduling algorithm (PRR or WRR), and whether or not
that class is classified as overlimit. A class that is classified
as overlimit might be additionally limited in the amount of
data that it can send, being essentially rate-limited to its link-
sharing bandwidth.

In CBQ, the worst-case delay for a packet from a guaranteed-
service connection occurs when packets from connection

arrive at the gateway just after connection 's turn in the
round-robin scheme has passed.

Consider the delay for connection at a particular gate-
way. Assume that there are at most priority-1 classes, with
the th class having a bandwidth allocation of . Let the
capacity of the output link be bytes/sec. (Let
be connection 's allocated fraction of the bandwidth, for

, the entitled bandwidth for connection . We assume
that at most half of the bandwidth is allocated to priority-1
classes: . (This is not because we believe that
this is a necessary condition for providing guaranteed service
in our scheme; this is simply because this greatly simplifies
the analysis.)

C.2.1 Packet-by-packet round robin

The main reason to examine PRR is to explain why WRR
scheduling gives better performance for guaranteed service

traffic than WRR scheduling. With PRR for servicing priority-
1 classes, as in the current distribution of CBQ code, priority-
1 classes are serviced in round-robin order, and each class
that is not overlimit gets to send exactly one packet per round.

We assume that is an upper bound on the possible num-
ber of priority-1 classes. Assume that all of the packets for
the priority-1 classes contain at most bytes.
Then a class- packet that arrives at the gateway just af-
ter its “turn” has to wait at most seconds for the
other priority-1 classes to send a packet. (If a non-priority-
one packet was in service when the class- packet arrived,
the class also has to wait for the router to finish trans-
mitting that packet. However, with CBQ no lower-priority
packets will be sent when there is a non-overlimit higher-
priority class with data to send.) If each packet for class
has at least bytes, then the bandwidth received by class
in each round of the round-robin is at least

If
(2)

where is class 's entitled bandwidth, then class re-
ceives at least its entitled bandwidth in every round-robin
round. In this case, class- 's delay due to the wait for its
turn in the round-robin is at most seconds.

Equation 2 is likely to hold for a link where the aggregate
bandwidth allocated to priority-one classes is small relative
to the link bandwidth. Equation 2 is also likely to hold for a
priority-one class that does not send small data packets and
does not have a disproportionate allocation of the bandwidth
among the priority-one classes.

If equation 2 does not hold, the packets arriving for class
at rate could accumulate in a queue for that class un-

til some of the other priority-one classes are classified as
overlimit, and rate-limited to their allocated bandwidth. In
this case, in order to calculate the worst-case delay for class

packets, we would have to calculate the worst-case time
until other priority-one classes that are receiving more than
their share of the bandwidth can be classified as overlimit,
and then calculate the worst-case time until the accumulated
backlog for class has been dispersed. This depends on such
factors as the time constant used by the estimator in esti-
mating the bandwidth used by each class. Rather than go-
ing through these rather tedious calculations, we point out
below that for a version of WRR scheduling where each
priority-one class is guaranteed to receive its allocated band-
width in each round of the round-robin, it is much more
straightforward to bound the worst-case delay of an arriving
guaranteed-service packet.

C.3 Weighted round robin

In our implementation of WRR, the priority-1 classes are
served in round robin order. Each priority-1 class that is not

12

overlimit is allowed to send bytes. The parameter is
required to be at least , for L the maximum packet size
in bytes, and the maximum number of priority-one classes
that will be active at one time. Each class is allowed to fin-
ish sending the packet that contains the -th byte. If a
class exceeds its allotment by bytes, then its allotment for
the next round is decremented by that amount. We say that
a class that has exceeded its allotment in this fashion has a
deficit.

Note that with this implementation of WRR, for a priority-
1 class with a sufficiently large allocation (that is, where
is larger than the biggest packet for that class), that class will
never be forced to “wait out” a round of the round robin due
to a large accumulated deficit. However, given a static value
for , if none of the priority-1 classes with “larger” alloca-
tions have data to send, and all of the priority-1 classes with
“smaller” allocations have to “wait out” a round of the round
robin due to a large accumulated deficit, then the schedul-
ing algorithm could (conceptually) take several rounds of the
round robin before reducing the deficits and finding some
priority-one class that is able to send a packet.

We explore the worst-case delay for a class- packet
that arrives at the gateway with no class- backlog and no
deficit.

Observation 1: At most

bytes can be transmitted in one round of the priority-one
round-robin. (Each class can send at most bytes over its
allotted number of bytes in one round. This also uses the as-
sumption that at most half of the link bandwidth is allocated
to priority-1 classes.)

Observation 2: Each priority-one class is guaranteed to
receive its allocated share of the bandwidth in each round-
robin round, unless some of this allocation was used `in ad-
vance' in the most recently-sent packet from that connection.

Proof: Priority-1 class gets to send at least bytes
in a round (unless some of those bytes were sent `in advance'
in the most recent packet). Thus class gets a fraction at
least

of the bandwidth in each round-robin round. (This calcula-
tion uses the assumption that .)

Observation 3: For a priority-one class with no backlog
at the gateway and with no deficit, an arriving packet from
class can wait at most

seconds before receiving service. (This includes the trans-
mission delay for the packet in service when the class-
packet arrives at the gateway.)

Thus, a CBQ node that implements WRR for providing
guaranteed service could advertise the constants

and

C.4 Comparisons of Weighted Round Robin
and Weighted Fair Queueing

Note that unlike weighted fair queueing, with our implemen-
tation of weighted round robin the worst case packet delay is
the same for any priority-1 class, and is not a function of
the allocated bandwidth for that class. In comparison, the
worst-case packet delay in WFQ, L/R, is a function of the
bandwidth R assigned to that class.

The worst-case delay for high-bandwidth guaranteed ser-
vice classes could be reduced further, if desired, by giving
those classes more than one turn in each round of the round-
robin. The frame structure is the order in which classes are
listed for one round-robin round. `Choosing a good frame
structure' in Section 1.6.3 of Parekh's thesis gives an easy
algorithm for creating a good frame structure. This kind of
change would move WRR closer to a fluid-flow scheduling
model.

An essentially equivalent way to explore the space be-
tween the WRR and WFQ scheduling algorithms would be to
modify the version of WRR described in this paper to reduce
M, the maximum number of bytes that can be sent in one
round of the round robin without “borrowing” from rounds
of the round-robin, and to place restrictions on the number of
bytes that a class can borrow from future rounds. This kind
of change would move WRR closer to a fluid-flow schedul-
ing model: rounds would be smaller, a class with a large
allocation would be guaranteed to receive its allocated band-
width in every round of the round robin, and a class with a
small allocation would be guaranteed to receive its allocated
bandwidth in every rounds of the round robin.

13

